Алгоритм Дейкстры

Алгоритм Дейкстры позволяет найти кратчайший путь между любыми двумя вершинами графа.

Оно отличается от минимального остовного дерева тем, что кратчайшее расстояние между двумя вершинами может не включать все вершины графа.

Как работает алгоритм Дейкстры

Алгоритм Дейкстры основан на том, что любой подпуть B -> Dкратчайшего пути A -> Dмежду вершинами A и D также является кратчайшим путем между вершинами B и D.

Каждый подпуть - это кратчайший путь

Джикстра использовал это свойство в противоположном направлении, т.е. мы переоцениваем расстояние каждой вершины от начальной вершины. Затем мы посещаем каждый узел и его соседей, чтобы найти кратчайший подпуть к этим соседям.

Алгоритм использует жадный подход в том смысле, что мы находим следующее лучшее решение, надеясь, что конечный результат будет лучшим решением для всей проблемы.

Пример алгоритма Дейкстры

Легче начать с примера, а затем подумать об алгоритме.

Начните с взвешенного графа. Выберите начальную вершину и назначьте значения бесконечного пути всем другим устройствам. Перейдите к каждой вершине и обновите длину ее пути. Если длина пути соседней вершины меньше новой длины пути, не обновляйте ее. Избегайте обновления пути. длины уже посещенных вершин. После каждой итерации мы выбираем непосещенную вершину с наименьшей длиной пути. Итак, мы выбираем 5 перед 7. Обратите внимание на то, как длина пути у самой правой вершины обновляется дважды. Повторяйте, пока не будут посещены все вершины.

Псевдокод алгоритма Джикстры

Нам нужно поддерживать путь до каждой вершины. Мы можем сохранить это в массиве размера v, где v - количество вершин.

Мы также хотим иметь возможность получить кратчайший путь, а не только знать длину кратчайшего пути. Для этого мы сопоставляем каждую вершину с вершиной, которая последней обновила свой путь.

После завершения алгоритма мы можем вернуться от целевой вершины к исходной вершине, чтобы найти путь.

Очередь с минимальным приоритетом может использоваться для эффективного приема вершины с наименьшим расстоянием по пути.

 function dijkstra(G, S) for each vertex V in G distance(V) <- infinite previous(V) <- NULL If V != S, add V to Priority Queue Q distance(S) <- 0 while Q IS NOT EMPTY U <- Extract MIN from Q for each unvisited neighbour V of U tempDistance <- distance(U) + edge_weight(U, V) if tempDistance < distance(V) distance(V) <- tempDistance previous(V) <- U return distance(), previous()

Код для алгоритма Дейкстры

Реализация алгоритма Дейкстры на C ++ представлена ​​ниже. Сложность кода может быть улучшена, но абстракции удобны для связи кода с алгоритмом.

Python Java C C ++
 # Dijkstra's Algorithm in Python import sys # Providing the graph vertices = ((0, 0, 1, 1, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0), (1, 1, 0, 1, 1, 0, 0), (1, 0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1, 0)) edges = ((0, 0, 1, 2, 0, 0, 0), (0, 0, 2, 0, 0, 3, 0), (1, 2, 0, 1, 3, 0, 0), (2, 0, 1, 0, 0, 0, 1), (0, 0, 3, 0, 0, 2, 0), (0, 3, 0, 0, 2, 0, 1), (0, 0, 0, 1, 0, 1, 0)) # Find which vertex is to be visited next def to_be_visited(): global visited_and_distance v = -10 for index in range(num_of_vertices): if visited_and_distance(index)(0) == 0 and (v < 0 or visited_and_distance(index)(1) <= visited_and_distance(v)(1)): v = index return v num_of_vertices = len(vertices(0)) visited_and_distance = ((0, 0)) for i in range(num_of_vertices-1): visited_and_distance.append((0, sys.maxsize)) for vertex in range(num_of_vertices): # Find next vertex to be visited to_visit = to_be_visited() for neighbor_index in range(num_of_vertices): # Updating new distances if vertices(to_visit)(neighbor_index) == 1 and visited_and_distance(neighbor_index)(0) == 0: new_distance = visited_and_distance(to_visit)(1) + edges(to_visit)(neighbor_index) if visited_and_distance(neighbor_index)(1)> new_distance: visited_and_distance(neighbor_index)(1) = new_distance visited_and_distance(to_visit)(0) = 1 i = 0 # Printing the distance for distance in visited_and_distance: print("Distance of ", chr(ord('a') + i), " from source vertex: ", distance(1)) i = i + 1
 // Dijkstra's Algorithm in Java public class Dijkstra ( public static void dijkstra(int()() graph, int source) ( int count = graph.length; boolean() visitedVertex = new boolean(count); int() distance = new int(count); for (int i = 0; i < count; i++) ( visitedVertex(i) = false; distance(i) = Integer.MAX_VALUE; ) // Distance of self loop is zero distance(source) = 0; for (int i = 0; i < count; i++) ( // Update the distance between neighbouring vertex and source vertex int u = findMinDistance(distance, visitedVertex); visitedVertex(u) = true; // Update all the neighbouring vertex distances for (int v = 0; v < count; v++) ( if (!visitedVertex(v) && graph(u)(v) != 0 && (distance(u) + graph(u)(v) < distance(v))) ( distance(v) = distance(u) + graph(u)(v); ) ) ) for (int i = 0; i < distance.length; i++) ( System.out.println(String.format("Distance from %s to %s is %s", source, i, distance(i))); ) ) // Finding the minimum distance private static int findMinDistance(int() distance, boolean() visitedVertex) ( int minDistance = Integer.MAX_VALUE; int minDistanceVertex = -1; for (int i = 0; i < distance.length; i++) ( if (!visitedVertex(i) && distance(i) < minDistance) ( minDistance = distance(i); minDistanceVertex = i; ) ) return minDistanceVertex; ) public static void main(String() args) ( int graph()() = new int()() ( ( 0, 0, 1, 2, 0, 0, 0 ), ( 0, 0, 2, 0, 0, 3, 0 ), ( 1, 2, 0, 1, 3, 0, 0 ), ( 2, 0, 1, 0, 0, 0, 1 ), ( 0, 0, 3, 0, 0, 2, 0 ), ( 0, 3, 0, 0, 2, 0, 1 ), ( 0, 0, 0, 1, 0, 1, 0 ) ); Dijkstra T = new Dijkstra(); T.dijkstra(graph, 0); ) )
 // Dijkstra's Algorithm in C #include #define INFINITY 9999 #define MAX 10 void Dijkstra(int Graph(MAX)(MAX), int n, int start); void Dijkstra(int Graph(MAX)(MAX), int n, int start) ( int cost(MAX)(MAX), distance(MAX), pred(MAX); int visited(MAX), count, mindistance, nextnode, i, j; // Creating cost matrix for (i = 0; i < n; i++) for (j = 0; j < n; j++) if (Graph(i)(j) == 0) cost(i)(j) = INFINITY; else cost(i)(j) = Graph(i)(j); for (i = 0; i < n; i++) ( distance(i) = cost(start)(i); pred(i) = start; visited(i) = 0; ) distance(start) = 0; visited(start) = 1; count = 1; while (count < n - 1) ( mindistance = INFINITY; for (i = 0; i < n; i++) if (distance(i) < mindistance && !visited(i)) ( mindistance = distance(i); nextnode = i; ) visited(nextnode) = 1; for (i = 0; i < n; i++) if (!visited(i)) if (mindistance + cost(nextnode)(i) < distance(i)) ( distance(i) = mindistance + cost(nextnode)(i); pred(i) = nextnode; ) count++; ) // Printing the distance for (i = 0; i < n; i++) if (i != start) ( printf("Distance from source to %d: %d", i, distance(i)); ) ) int main() ( int Graph(MAX)(MAX), i, j, n, u; n = 7; Graph(0)(0) = 0; Graph(0)(1) = 0; Graph(0)(2) = 1; Graph(0)(3) = 2; Graph(0)(4) = 0; Graph(0)(5) = 0; Graph(0)(6) = 0; Graph(1)(0) = 0; Graph(1)(1) = 0; Graph(1)(2) = 2; Graph(1)(3) = 0; Graph(1)(4) = 0; Graph(1)(5) = 3; Graph(1)(6) = 0; Graph(2)(0) = 1; Graph(2)(1) = 2; Graph(2)(2) = 0; Graph(2)(3) = 1; Graph(2)(4) = 3; Graph(2)(5) = 0; Graph(2)(6) = 0; Graph(3)(0) = 2; Graph(3)(1) = 0; Graph(3)(2) = 1; Graph(3)(3) = 0; Graph(3)(4) = 0; Graph(3)(5) = 0; Graph(3)(6) = 1; Graph(4)(0) = 0; Graph(4)(1) = 0; Graph(4)(2) = 3; Graph(4)(3) = 0; Graph(4)(4) = 0; Graph(4)(5) = 2; Graph(4)(6) = 0; Graph(5)(0) = 0; Graph(5)(1) = 3; Graph(5)(2) = 0; Graph(5)(3) = 0; Graph(5)(4) = 2; Graph(5)(5) = 0; Graph(5)(6) = 1; Graph(6)(0) = 0; Graph(6)(1) = 0; Graph(6)(2) = 0; Graph(6)(3) = 1; Graph(6)(4) = 0; Graph(6)(5) = 1; Graph(6)(6) = 0; u = 0; Dijkstra(Graph, n, u); return 0; )
 // Dijkstra's Algorithm in C++ #include #include #define INT_MAX 10000000 using namespace std; void DijkstrasTest(); int main() ( DijkstrasTest(); return 0; ) class Node; class Edge; void Dijkstras(); vector* AdjacentRemainingNodes(Node* node); Node* ExtractSmallest(vector& nodes); int Distance(Node* node1, Node* node2); bool Contains(vector& nodes, Node* node); void PrintShortestRouteTo(Node* destination); vector nodes; vector edges; class Node ( public: Node(char id) : id(id), previous(NULL), distanceFromStart(INT_MAX) ( nodes.push_back(this); ) public: char id; Node* previous; int distanceFromStart; ); class Edge ( public: Edge(Node* node1, Node* node2, int distance) : node1(node1), node2(node2), distance(distance) ( edges.push_back(this); ) bool Connects(Node* node1, Node* node2) ( return ( (node1 == this->node1 && node2 == this->node2) || (node1 == this->node2 && node2 == this->node1)); ) public: Node* node1; Node* node2; int distance; ); /////////////////// void DijkstrasTest() ( Node* a = new Node('a'); Node* b = new Node('b'); Node* c = new Node('c'); Node* d = new Node('d'); Node* e = new Node('e'); Node* f = new Node('f'); Node* g = new Node('g'); Edge* e1 = new Edge(a, c, 1); Edge* e2 = new Edge(a, d, 2); Edge* e3 = new Edge(b, c, 2); Edge* e4 = new Edge(c, d, 1); Edge* e5 = new Edge(b, f, 3); Edge* e6 = new Edge(c, e, 3); Edge* e7 = new Edge(e, f, 2); Edge* e8 = new Edge(d, g, 1); Edge* e9 = new Edge(g, f, 1); a->distanceFromStart = 0; // set start node Dijkstras(); PrintShortestRouteTo(f); ) /////////////////// void Dijkstras() ( while (nodes.size()> 0) ( Node* smallest = ExtractSmallest(nodes); vector* adjacentNodes = AdjacentRemainingNodes(smallest); const int size = adjacentNodes->size(); for (int i = 0; i at(i); int distance = Distance(smallest, adjacent) + smallest->distanceFromStart; if (distance distanceFromStart) ( adjacent->distanceFromStart = distance; adjacent->previous = smallest; ) ) delete adjacentNodes; ) ) // Find the node with the smallest distance, // remove it, and return it. Node* ExtractSmallest(vector& nodes) ( int size = nodes.size(); if (size == 0) return NULL; int smallestPosition = 0; Node* smallest = nodes.at(0); for (int i = 1; i distanceFromStart distanceFromStart) ( smallest = current; smallestPosition = i; ) ) nodes.erase(nodes.begin() + smallestPosition); return smallest; ) // Return all nodes adjacent to 'node' which are still // in the 'nodes' collection. vector* AdjacentRemainingNodes(Node* node) ( vector* adjacentNodes = new vector(); const int size = edges.size(); for (int i = 0; i node1 == node) ( adjacent = edge->node2; ) else if (edge->node2 == node) ( adjacent = edge->node1; ) if (adjacent && Contains(nodes, adjacent)) ( adjacentNodes->push_back(adjacent); ) ) return adjacentNodes; ) // Return distance between two connected nodes int Distance(Node* node1, Node* node2) ( const int size = edges.size(); for (int i = 0; i Connects(node1, node2)) ( return edge->distance; ) ) return -1; // should never happen ) // Does the 'nodes' vector contain 'node' bool Contains(vector& nodes, Node* node) ( const int size = nodes.size(); for (int i = 0; i < size; ++i) ( if (node == nodes.at(i)) ( return true; ) ) return false; ) /////////////////// void PrintShortestRouteTo(Node* destination) ( Node* previous = destination; cout << "Distance from start: "  id 
 node2 == node) ( cout << "adjacent: "  id 
   

Dijkstra's Algorithm Complexity

Time Complexity: O(E Log V)

where, E is the number of edges and V is the number of vertices.

Space Complexity: O(V)

Dijkstra's Algorithm Applications

  • To find the shortest path
  • In social networking applications
  • In a telephone network
  • To find the locations in the map

Интересные статьи...